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1. Random variables and probability distributions

1.1. Univariate random variables and distributions
Key concept: random variables (r.v.).
o (Revision: basic rules for the calculation of probabilities)

e Tentative description: a variable that can take different values in subsequent
“experiments”

e Notation: X is the r.v., z-s are the values that it can take

e More formal definition: A function from a sample space S into the real
numbers

— Sample space: all possible outcomes of a particular experiment

— Experiment: a procedure that can be repeated an infinite number of
times, which has a well-defined set of possible outcomes

e Example: tossing a coin 10 times, and calculating the number of heads

e Types: discrete and non-discrete random variables

Discrete random variables.
e Can take finite (or countably infinite) number of values x1, x2, ..., 2k, .. .
e Examples: tossing a coin, throwing a dice

e Probability density (or mass) function (pdf, pmf): gives the probability of
each possible value, Pr(X = z;) = pj, with 3% p; =1 (or 3252, p; = 1)

— For the dice-throwing example, Pr(X = 1) = 1/6,Pr(X = 2) =
1/6,...,Pr(X =6)=1/6



— For the coin-throwing example, Pr(X = Head) = 1/2,Pr(X =
Tail) =1/2

Discrete distributions: examples.

e Bernoulli (p): X can take two values, 0 and 1. Pr(X = 1) = p, Pr(X =
0)=1-np.

— Result of a random coin toss is Bernoulli.

e Binomial (n,p): sum of n (independent) Bernoulli distributed r.v-s: ¥ =
X1+ X9 + -+ X, where X; are all Bernoulli. Y can take n + 1 values:
0,1,,n.Pr(Y =k) = (Z)pk(l —p)k

— Number of heads after tossing a coin ten times is Binomial.
e Poisson (A\): Pr(X =k) = ),‘f—l;e_A for all £ > 0 integer.

— Number of doctor visits during a year for a particular person can be
Poisson.

e Geometric (p): Pr(X = k) = p(1 — p)*~! for all k > 1 integer.

— The time until a head occurs in the coin-tossing example

Continuous random variables.

e Non-discrete r.v.: Can take (uncountably) infinitely many values (like x € R,
r e R, xze|0;1])

e Continuous r.v.: takes on any real value with zero probability
e Example: uniform distribution on [0; 1] .

— It can take values in this interval, each value is equally likely. (Similar
to throwing with a fair dice with infinitely many sides.)

e Example for a non-continuous and non-discrete variable: a mixture of a zero
(with probability p) and a uniform (with probability 1 — p)

Cumulative distribution function (cdf).
e Cumulative distribution function (cdf): F'(z) = Pr(X < z)
— this is the probability of X taking a value not larger than x.
e Can be defined for any (e.g. discrete or continuous) r.v.

e Properties:



lim, oo F(x) = 0and lim, , F(z) =1

F(z) is non-decreasing

F(x) is right-continuous
Pr(X >a)=1- F(a)
Pr(a< X <b)=Pr(X <b) —Pr(X <a)=F(b) — F(a)

Probability density function (pdf) for continuous r.v.-s.

e Probability density function (pdf) of a continuous variable: f(z) = F'(x),
the derivative of the cdf

e It gives probabilities of X taking value in a given range: Pr(a < X <b) =
b
[ f@)dt

e Note: the probability density function f(z) of a continuous r.v. does not
represent the probability of any particular value, since Pr(X = z) = 0 for
each z.

e But f(x) is still informative about the "typical” values: Pr(z < X < z +
dz) =~ f(x)dz if dx is small.

e Properties:
- f(@) =0
(o)
- ffoo flx)dx =1
Continuous distributions: examples.

e Uniform (a, b): takes values on [a; b] and each value is equally likely. f(x) =
1/(b—a)if a < x < b and zero otherwise.

. - (z—p)?

e Normal (y,0): f(x) = ——=e 2o, where yand o > 0 are parameters
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e Exponential (0): f(z) = %e_%, (x > 0), 0 is the parameter

e [ognormal and Gamma distributions (see later)

Transformation of random variables.

e Let X be arv. and g a real-valued function. Then Y = ¢g(X) is ar.v. as
well.

e Let X be a random variable with cdf Fx(x) and pdf fx(z) = F'(x). Sup-
pose Y = g(X) for some strictly increasing function g(). Then the cdf
Fy (y) and pdf fy (y) of random variable Y are Fy (y) = Fx (97' (y)) and

fr(y) = ﬁfx 9 (w)] -



— Proof: for each a, Fx(a) = Pr(X < a). Then Fy(a) = Pr(Y <
a) =Pr(g(X) <a) =Pr(X <g'(a)) = Fx [g7'(a)]. (One can
take the inverse as g() is strictly monotone.) fy (a) is obtained simply
by taking the derivative of Fy (a).

Simulation of distributions.

e A useful result: u is a uniformly distributed random variable on [0, 1], and
F () is the cdf of an arbitrary continuous distribution. Then the random vari-
able F~1(u) is distributed according to the distribution defined by F. (F~!
is the inverse of function F'.)

e Proof: in the problem set

1.2. Joint distributions

Joint distribution and independence.

e et X and Y two discrete random variables with possible values x1, x2, . . . , g
and y1, Y2, . .., y. Then the joint pdf of X and Y is fx y(z,y) = Pr(X =
x,Y = y). Usual notation: Pr(X = z;,Y = y;) = p;; with Zle Zé‘:l Pij =
1.

e A similar definition exists for continuous r.v.-s.

e For more thantwor.v.-s: f(x1,x2,...2,) = Pr(X] =21, Xo = x9,... X, =
Tn)

e X and Y are independent if and only if Pr(X = 2,V = y) = Pr(X =
x) - Pr(Y = y) for each (x,y).

e Similarly for more than two r.v.-s.

e Note: this can also be written as fx y(z,y) = fx(z) - fy(y), where fx y is
the joint pdf, and fx, fy are the marginal probability density functions.

Example.

e X can take x; and x9, Y can take y; and yo, with the following pdf:

Y1 Y2 Di-
1 | 04103 0.7
x9 | 021011 0.3

| p; [06]04]10]

e Then the marginal distributions:



- Pr(X =21) =07, Pr(X = 22) =0.3
- Pr(Y =91)=0.6,Pr(Y =y2) =0.4

e Isittrue that Pr(X =2, = y) = Pr(X = z)-Pr(Y = y) foreach (x,y)?
Are X and Y independent?

e Modify the joint pdf of X and Y in such a way that they become independent

(with the same marginal pdf-s)!

Conditional distributions.

e X and Y are two random variables. Conditional distribution of Y on X: the
distribution of Y given that X takes a certain value x.

e Conditional pdf: fy|x(y | z) = Pr(Y =y | X = x), i.e. the probability of
Y =y given that X = z.

e Note: fy|x(y | z) can also be written as fx y (=, y)/fx(z).

e Independence of X and Y means that the conditional distribution of Y on
X does not depend on X: fyx(y | ¥) = fxy(z,y)/fx(x) = fx(z)-
fy@)/fx(@) = fv(y)

e Example (cont.): in the previous example,

— The conditional distribution of Y given that X = z: Pr(Y = 4| X =
:L’l) = 4/7, PI“(Y = yng = $1) = 3/7.

— The conditional distribution of Y given that X = zo: Pr(Y = y1|X =
x2) =2/3,Pr(Y = y2| X = x2) = 1/3.

2. Numerical measures of probability distributions

2.1. Measures of central tendency

Numerical measures of central tendency.

e These show the "typical" element of the distribution.

e Expected value: the "average" value, weighted according to the probability
distribution

e Median (of a continuous r.v.): the number m such that F'(m) = 1/2

— i.e. 50% of all elements are smaller, and 50% of all elements are higher.

— For discrete r.v.-s it may not be unique. E.g. in the coin-tossing example
every 0 < m < 1 may be a median.



e Mode: the element of which the probability is highest, or where f(x) takes
its maximum value

— It may not be unique.

e For symmetric distributions, all measures yield the same result.

Expected value.
e Expected value: E(X) = Y° piz; or E(X) = [*_af(z)dx

e Properties:

— Expected value of constant ¢: E(c) = ¢
- If a, b constant, X is a random variable, then E(aX +b) = aE(X)+b

— Expected value of a sum (or a linear combination) equals the sum
(or linear combination) of expected values: for all (aj,as,...,ay)
real numbers and (X1, Xo,..., X)) rve-s E(a1 X1 + ... + a, X)) =
amE(X1)+ ... +a, E(Xy).

e Minimizing property of the expected value: the expression F/ ((X — b)2) is
minimized if b = E (X).
Examples.
e Bernoulli (p): E(X)=px1+(1—p)*x0=p
e Binomial (n,p): E(X) = np (why?)
e Normal (u,0): E(X) = u (why?)
e Exponential (0): E(X) = 6 (why?)

e What is the median and mode of these distributions?

Expected value of transformations.

e Let X be arv. and g a real-valued function. Then Y = ¢g(X) is ar.v. as
well.

e To calculate £ (g (X)), we do not need to determine the distribution of
g (X) since it can be calculated as E (g (X)) = > ooy pig (zi) or E (g (X)) =

J2o 9 (@) f (2) da.
e Note: for nonlinear g functions E (¢ (X)) # g (E (X)) .

— Jensen’s inequality: if g is convex, then E' (¢ (X)) > g (E (X)) .

e Example: calculate F(X?) for the dice-throwing example!



2.2. Measures of variation

Numerical measures of variation.

e These measure the variability of the random variable.

Range: the difference between the largest and smallest (possible) element

Mean absolute deviation: the expected value of the absolute deviation from
the mean: F (| X — E(X)])

Variance: the expected value of the squared deviation from the mean: Var(X) =
Elx - E(X))Q] = E(X?) — (B(X))’

— For discrete random variables, E(X?) = Zle p;z?, for continuous
random variables E (X?) = [% 2% f(z)dz.

Standard deviation: the square root of the variance: sd(X) = ox = \/ E(X?) — (E(X))?

Variance and standard deviation.
e Properties:

— For a, b constants and an X random variable, Var(aX+b) = a*Var(X)
and sd(aX + b) = |a| sd(X).

— The variance and standard deviation of a constant c are 0: Var (¢) = 0.

e Standardization of a random variable: let £ (X) = p and sd (X) = 0. Then
Z = % is the standardized r.v., for which £ (Z) = 0 and sd (Z) = 1.

Examples.
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Variance of a throw with dice: 15

e Variance of a Bernoulli (p) variable is p(1 — p)

Variance of a Binomial (n, p) variable is np(1 — p)

Variance of a standard normal random variable (with 4 = 0, 0 = 1) is
Var(X) = 1 (proof: with integration by parts)

Variance of a Normal (u, o) variable is Var(X) = o2.



2.3. Other measures

Higher moments of the distributions.

e n-th moment of a distribution: E (X")

n-th central moment of a distribution: E {[X — E (X)]"}

Variance = second central moment

3
Skewness (standardized third central moment) = F/ [(X“> }

o

— Skewness: It measures the asymmetry of the distribution.

o

4
Kurtosis (standardized fourth central moment) = E {(X_“> }

— Kaurtosis of the normal distribution is 3.

— It measures the "peakedness" of the distribution and that how "heavy"
its tails are.
Quantiles: other descriptive measures of the distributions.
e Quartiles: the "thresholds" between the quarters of distributions.

— 25% of the distribution is smaller than the first quartile, and 75% is
bigger.

— 50% of the distribution is smaller than the second quartile, and 50% is
bigger. (So second quartile = median.)

e Deciles: the "thresholds" between each 10% of the distribution.

— Example: 30% of the distribution is smaller than the third decile, and
70% is bigger.

e Percentile: the "thresholds" between each 1% of the distribution.
— Example: 72% of the distribution is smaller than the seventy-second
percentile, and 28% is bigger.
2.4. Maeasures for joint distributions
Measures of association.
e Covariance: Cov(X,Y) =oxy = E[(X — E(X)) (Y — E(Y))]
e A useful property: Cov(X,Y) = E(XY) — E(X)E(Y).

e Correlation: Corr(X,Y) = Scf(‘}?)(fd(y% = oxoy




Properties of covariance and correlation.
e If X and Y are independent, then Cov(X,Y) =0

— To see why, use the definition of expected value.

- The inverse is not true!!! Example: Pr(X = 1) =0.25, Pr(X =0) =
0.5, Pr(X = —1) = 0.25, and let Y = X2,

e Ifa, b, c, dconstant, X, Y are random variables, then Cov(aX+b, cY +d) =
acCov(X,Y).

e Cauchy-Schwartz-inequality: |Cov(X,Y)| < sd(X) - sd(Y')
e —1 < Corr(X,Y) <1 (follows from Cauchy-Schwartz)

- Corr(X,Y) = 1if and only if there is a perfect positive linear relati-
onship.

- Corr(X,Y) = —1 if and only if there is a perfect negative linear
relationship.

e Correlation is scale-invariant, i.e. Corr(aX+b, cY +d) = sign(ac)Corr(X,Y).

Further properties of variance.
e Var(aX +bY) =a*Var(X) + v*Var(Y) + 2abCov(X,Y)

e So Var(aX +bY) = a®?Var(X) + b*Var(Y) if only if X and Y are un-
correlated.

e Similarly, if X and Y are uncorrelated, then Var (X —Y) = Var (X) +
Var (Y).

o If {X;,...,X,} are pairwise uncorrelated r.v.-s and {ay,...,a,} are real
numbers, then Var (3°1 | a;X;) =Y 1 aZVar (X;).

)

Conditional expectation.

e E(Y | X = x) is the expected value of Y given that X takes a certain value
of x. It is just a function of x which tells how the expected value of Y varies
with the values of X.

e BE(Y | X=2)=YF 1y;Pr(Y=y; | X=2) =5 yifyix ;| 2)

e Example: X is years of education, Y is yearly wage. Then E(Y | X = 12)
(the expected wage of those who went to school for 12 years) is probably
higher than E(Y | X = 6).

e Note: we can use the notation E (Y | X) for the random variable which
takes the value E (Y | X = z) for X = z. This r.v. is a function of X.



Properties of conditional expectation.
e For any function ¢(): E [¢(X) | X] = ¢(X).

e For any functions a() and b(): E [a(X)Y +b(X) | X]=a(X)E(Y | X)+
b(X)

e If X and Y are independent, then E(Y | X) = E(Y).

- As a consequence, if E(U) = 0 and U is independent of X, then
EU | X)=0.

e Minimizing property: F (Y | X) minimizes the expected squared prediction
error for Y among all functions of X.

- Letp(X) = E(Y | X).Then, forevery g() function, £ [(Y —u(X))?| X}
E(Y - g(X))*| X] and B [(v — ()] < B [(v = g(X))"].

IN

Law of iterated expectations.
e Law of iterated expectations: F [F (Y | X)] = E(Y).
e A generalization: E[E(Y | X)|=FE[E(Y | X,Z) | X].

e A consequence: if E(Y | X) = E(Y) then Cov (X,Y) = 0. Moreover,
every function of X is uncorrelated with Y.

— The converse is not true. Example?

Conditional variance.

e Similar to the unconditional case: Var(Y | X =z) = E(Y?| X =1) —
(B(Y | X =2))*

o A useful property:

- If X and Y are independent, then Var(Y | X = z) = Var(Y) for
each z
Summary: alternative definitions of ''independence''.

e "Stochastic" independence: if f(Y | X = z) is the same for all z. (This is
what we defined, and we will understand "independence" as this.)

e Mean independence: if F (Y | X = x) is the same for all .
e Uncorrelatedness: if Corr(X,Y) =oxy =0

e "Stochastic" independence implies mean independence. Mean independence
implies uncorrelatedness. But the opposites are not true!!!
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Summary of some common distributions.

Discrete Pr(X =k) E(X) sd(X)
Bernoulli p;l—p p \/P(l -p)
Binomial (Z)pk(l —p)F np Vnp(1 —p)
Poisson Ak—fefk A VA
Continuous f(z) F(zx) E(X) sd(X)
Uniform bia iy “TH’ 1\71—‘;
. = 1 s _=w)?
Normal | —j—e™ 202 — JE e 22 di m o
Exp. %ef% 1—e o 0 0

3. The normal distribution and related distributions

3.1. The normal distribution and its properties

It is of high importance because.

e Any linear combination of independent normal random variables is also nor-
mally distributed.

e [t is the basis of many other distributions that are frequently used in statistics
and econometrics: lognormal, chi-square, ¢-distribution, F'-distribution.

e Many real variables are normally distributed (like body height of people,
1Q-level of people etc). (Why?)

e Asympotics: many distributions have some relationship with the normal dis-
tribution in asymptotic terms (see later).

Properties of the normal distribution I.
o If X ~ N(u,0),thenaX +b~ N(ap+b,|a|o).
— Proof: use the rule for the pdf of transformed variables.

e Hence, if X ~ N(p,0), then (X — p) /o ~ N(0,1) (the standard normal
distribution).

e If X and Y are jointly normally distributed, then they are independent if and
only if Cov(X,Y) = 0.

— This is a special feature of the normal distribution!
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Properties of the normal distribution II.

e Let X ~ N(ux,0x),Y ~ N(uy,oy) and the two variables independent.
ThenX—l—YNN(uX—i—uyM/ag(—i—o%,) .

— Proof: start from Fx 4y (a) = Pr(X+Y <a) = [T Pr(Y <a—uz |
X)fx(z)dz = [7_Fy(a — ) - fx(x)dz, and take the derivative
with respect to a. Then tedious calculations show that fx.y(a) =

(a—px—ny)?

S S 2(o%+0%)
\/UX—l—JY\/ﬂ

e Let X ~ N(ux,0x),Y ~ N(uy,oy) and the two variables independent.

Then, for a and b constants, a X +bY ~ N (a,uX + buy, \/a?c% + b20%> :

— Proof: it follows from the previous results.

Calculation of normal probabilities.

e The standard normal cdf, ® (z) cannot be determined in a closed form integ-
ral but can be calculated numerically.

e All normal probabilities can be expressed in terms of the standard normal
cdf.

° LetXNN(M,U).ThenPr(a<X§b):@(%) _@(w)‘

(e

e Example: Pr (y%y < 1.96) = ©(1.96)—® (—1.96) = 2- (1.96) —1 =
0.95

3.2. Related distributions
Lognormal distribution.
e X is lognormally distributed if its logarithm is normally distributed
e If Y ~ N(u, ), then the random variable X = e is lognormally distribu-

ted. One can show: E (e¥) = e“*é, Var (e¥) = o2e2010°,

Chi-squared distribution.

o If Z1,Zs,...,7, are independent standard normal random variables, then
X =>"" | Z? follows a chi-squared distribution with n degrees of freedom.

e Its expected value and variance depends on the degrees of freedom: E(X) =
n, Var(X) = 2n (why?).
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e [t can take only positive values.

e [ts distribution is very asymmetric.

t-distribution.

~Y ~ 2 1 = Z
o If Z ~ N(0,1) and X ~ y;, independent from each other, then ¢ T

follows a t-distribution with n degrees of freedom.

e The shape is similar to the shape of standard normal distribution: it is sym-
metric, but has "heavier tails" (i.e. more extreme observations occur with
higher frequency).

e Expected value is 0 for n > 1, variance is ;"5 for n > 2 (otherwise the
moments do not exist).

e Asn —» 00, the t-distribution approaches the standard normal distribution.
(A proof requires the law of large numbers.)
F-distribution.

X1/k1
Xo/ko

o If X1 ~ le and Xy ~ Xig’ independent from each other, then F' =
follows an F'-distribution with k1 and ko degrees of freedom.

o [t can take only positive values.

° t% ~ F1 .

Material.

e W Appendix B

e CB 1, 2.1-2.3 (pages 47-62, until Definiton 2.3.6), 3.1-3.3, 3.5, 4.1-4.3, 4.5-
4.6.

— CB is needed only to the extent covered in the lectures.
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