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1. Random variables and probability distributions

1.1. Univariate random variables and distributions

Key concept: random variables (r.v.).

• (Revision: basic rules for the calculation of probabilities)

• Tentative description: a variable that can take different values in subsequent
“experiments”

• Notation: X is the r.v., x-s are the values that it can take

• More formal definition: A function from a sample space S into the real
numbers

– Sample space: all possible outcomes of a particular experiment

– Experiment: a procedure that can be repeated an infinite number of
times, which has a well-defined set of possible outcomes

• Example: tossing a coin 10 times, and calculating the number of heads

• Types: discrete and non-discrete random variables

Discrete random variables.

• Can take finite (or countably infinite) number of values x1, x2, . . . , xk, . . .

• Examples: tossing a coin, throwing a dice

• Probability density (or mass) function (pdf, pmf): gives the probability of
each possible value, Pr(X = xj) = pj , with

∑k
i=1 pi = 1 (or

∑∞
i=1 pi = 1)

– For the dice-throwing example, Pr(X = 1) = 1/6,Pr(X = 2) =
1/6, . . . ,Pr(X = 6) = 1/6
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– For the coin-throwing example, Pr(X = Head) = 1/2,Pr(X =
Tail) = 1/2

Discrete distributions: examples.

• Bernoulli (p): X can take two values, 0 and 1. Pr(X = 1) = p, Pr(X =
0) = 1− p.

– Result of a random coin toss is Bernoulli.

• Binomial (n, p): sum of n (independent) Bernoulli distributed r.v-s: Y =
X1 + X2 + · + Xn, where Xi are all Bernoulli. Y can take n + 1 values:
0, 1, ·, n. Pr(Y = k) =

(
n
k

)
pk(1− p)n−k.

– Number of heads after tossing a coin ten times is Binomial.

• Poisson (λ): Pr(X = k) = λk

k! e
−λ for all k ≥ 0 integer.

– Number of doctor visits during a year for a particular person can be
Poisson.

• Geometric (p): Pr(X = k) = p(1− p)k−1 for all k ≥ 1 integer.

– The time until a head occurs in the coin-tossing example

Continuous random variables.

• Non-discrete r.v.: Can take (uncountably) infinitely many values (like x ∈ <,
x ∈ <+, x ∈ [0; 1])

• Continuous r.v.: takes on any real value with zero probability

• Example: uniform distribution on [0; 1] .

– It can take values in this interval, each value is equally likely. (Similar
to throwing with a fair dice with infinitely many sides.)

• Example for a non-continuous and non-discrete variable: a mixture of a zero
(with probability p) and a uniform (with probability 1− p)

Cumulative distribution function (cdf).

• Cumulative distribution function (cdf): F (x) = Pr(X ≤ x)

– this is the probability of X taking a value not larger than x.

• Can be defined for any (e.g. discrete or continuous) r.v.

• Properties:
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– limx→−∞ F (x) = 0 and limx→∞ F (x) = 1

– F (x) is non-decreasing

– F (x) is right-continuous

– Pr(X > a) = 1− F (a)

– Pr(a < X ≤ b) = Pr(X ≤ b)− Pr(X ≤ a) = F (b)− F (a)

Probability density function (pdf) for continuous r.v.-s.

• Probability density function (pdf) of a continuous variable: f(x) = F ′(x),
the derivative of the cdf

• It gives probabilities of X taking value in a given range: Pr(a < X ≤ b) =∫ b
a f(t)dt

• Note: the probability density function f(x) of a continuous r.v. does not
represent the probability of any particular value, since Pr(X = x) = 0 for
each x.

• But f(x) is still informative about the "typical" values: Pr(x ≤ X ≤ x +
dx) ≈ f(x)dx if dx is small.

• Properties:

– f(x) ≥ 0

–
∫∞
−∞ f(x)dx = 1

Continuous distributions: examples.

• Uniform (a, b): takes values on [a; b] and each value is equally likely. f(x) =
1/(b− a) if a ≤ x < b and zero otherwise.

• Normal (µ, σ): f(x) = 1
σ
√
2π
e−

(x−µ)2

2σ2 , where µ and σ > 0 are parameters

• Exponential (θ): f(x) = 1
θe
−x
θ , (x > 0), θ is the parameter

• Lognormal and Gamma distributions (see later)

Transformation of random variables.

• Let X be a r.v. and g a real-valued function. Then Y = g(X) is a r.v. as
well.

• Let X be a random variable with cdf FX(x) and pdf fX(x) = F ′(x). Sup-
pose Y = g(X) for some strictly increasing function g(). Then the cdf
FY (y) and pdf fY (y) of random variable Y are FY (y) = FX

(
g−1 (y)

)
and

fY (y) = 1
g′(y)fX

[
g−1(y)

]
.
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– Proof: for each a, FX(a) = Pr(X ≤ a). Then FY (a) = Pr(Y ≤
a) = Pr (g(X) ≤ a) = Pr

(
X ≤ g−1(a)

)
= FX

[
g−1(a)

]
. (One can

take the inverse as g() is strictly monotone.) fY (a) is obtained simply
by taking the derivative of FY (a).

Simulation of distributions.

• A useful result: u is a uniformly distributed random variable on [0, 1], and
F () is the cdf of an arbitrary continuous distribution. Then the random vari-
able F−1(u) is distributed according to the distribution defined by F . (F−1

is the inverse of function F .)

• Proof: in the problem set

1.2. Joint distributions

Joint distribution and independence.

• LetX and Y two discrete random variables with possible values x1, x2, . . . , xk
and y1, y2, . . . , yl. Then the joint pdf of X and Y is fX,Y (x, y) = Pr(X =

x, Y = y). Usual notation: Pr(X = xi, Y = yj) = pij with
∑k

i=1

∑l
j=1 pij =

1.

• A similar definition exists for continuous r.v.-s.

• For more than two r.v.-s: f(x1, x2, . . . xn) = Pr(X1 = x1, X2 = x2, . . . Xn =
xn)

• X and Y are independent if and only if Pr(X = x, Y = y) = Pr(X =
x) · Pr(Y = y) for each (x, y).

• Similarly for more than two r.v.-s.

• Note: this can also be written as fX,Y (x, y) = fX(x) · fY (y), where fX,Y is
the joint pdf, and fX , fY are the marginal probability density functions.

Example.

• X can take x1 and x2, Y can take y1 and y2, with the following pdf:

y1 y2 pi·
x1 0.4 0.3 0.7
x2 0.2 0.1 0.3
p·j 0.6 0.4 1.0

• Then the marginal distributions:
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– Pr(X = x1) = 0.7, Pr(X = x2) = 0.3

– Pr(Y = y1) = 0.6, Pr(Y = y2) = 0.4

• Is it true that Pr(X = x, Y = y) = Pr(X = x) ·Pr(Y = y) for each (x, y)?
Are X and Y independent?

• Modify the joint pdf ofX and Y in such a way that they become independent
(with the same marginal pdf-s)!

Conditional distributions.

• X and Y are two random variables. Conditional distribution of Y on X: the
distribution of Y given that X takes a certain value x.

• Conditional pdf: fY |X(y | x) = Pr(Y = y | X = x), i.e. the probability of
Y = y given that X = x.

• Note: fY |X(y | x) can also be written as fX,Y (x, y)/fX(x).

• Independence of X and Y means that the conditional distribution of Y on
X does not depend on X: fY |X(y | x) = fX,Y (x, y)/fX(x) = fX(x) ·
fY (y)/fX(x) = fY (y)

• Example (cont.): in the previous example,

– The conditional distribution of Y given that X = x1: Pr(Y = y1|X =
x1) = 4/7, Pr(Y = y2|X = x1) = 3/7.

– The conditional distribution of Y given that X = x2: Pr(Y = y1|X =
x2) = 2/3, Pr(Y = y2|X = x2) = 1/3.

2. Numerical measures of probability distributions

2.1. Measures of central tendency

Numerical measures of central tendency.

• These show the "typical" element of the distribution.

• Expected value: the "average" value, weighted according to the probability
distribution

• Median (of a continuous r.v.): the number m such that F (m) = 1/2

– i.e. 50% of all elements are smaller, and 50% of all elements are higher.

– For discrete r.v.-s it may not be unique. E.g. in the coin-tossing example
every 0 ≤ m ≤ 1 may be a median.
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• Mode: the element of which the probability is highest, or where f(x) takes
its maximum value

– It may not be unique.

• For symmetric distributions, all measures yield the same result.

Expected value.

• Expected value: E(X) =
∑∞

i=1 pixi or E(X) =
∫∞
−∞ xf(x)dx

• Properties:

– Expected value of constant c: E(c) = c

– If a, b constant, X is a random variable, then E(aX+b) = aE(X)+b

– Expected value of a sum (or a linear combination) equals the sum
(or linear combination) of expected values: for all (a1, a2, . . . , an)
real numbers and (X1, X2, . . . , Xn) r.v.-s E(a1X1 + . . . + anXn) =
a1E(X1) + . . .+ anE(Xn).

• Minimizing property of the expected value: the expression E
(

(X − b)2
)

is
minimized if b = E (X) .

Examples.

• Bernoulli (p): E(X) = p ∗ 1 + (1− p) ∗ 0 = p

• Binomial (n, p): E(X) = np (why?)

• Normal (µ, σ): E(X) = µ (why?)

• Exponential (θ): E(X) = θ (why?)

• What is the median and mode of these distributions?

Expected value of transformations.

• Let X be a r.v. and g a real-valued function. Then Y = g(X) is a r.v. as
well.

• To calculate E (g (X)) , we do not need to determine the distribution of
g (X) since it can be calculated asE (g (X)) =

∑∞
i=1 pig (xi) orE (g (X)) =∫∞

−∞ g (x) f (x) dx.

• Note: for nonlinear g functions E (g (X)) 6= g (E (X)) .

– Jensen’s inequality: if g is convex, then E (g (X)) ≥ g (E (X)) .

• Example: calculate E(X2) for the dice-throwing example!
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2.2. Measures of variation

Numerical measures of variation.

• These measure the variability of the random variable.

• Range: the difference between the largest and smallest (possible) element

• Mean absolute deviation: the expected value of the absolute deviation from
the mean: E (|X − E(X)|)

• Variance: the expected value of the squared deviation from the mean: V ar(X) =

E
[
(X − E(X))2

]
= E

(
X2
)
− (E(X))2

– For discrete random variables, E(X2) =
∑k

i=1 pix
2
i , for continuous

random variables E
(
X2
)

=
∫∞
−∞ x

2f(x)dx.

• Standard deviation: the square root of the variance: sd(X) = σX =
√
E (X2)− (E(X))2

Variance and standard deviation.

• Properties:

– For a, b constants and anX random variable, V ar(aX+b) = a2V ar(X)
and sd(aX + b) = |a| sd(X).

– The variance and standard deviation of a constant c are 0: V ar (c) = 0.

• Standardization of a random variable: let E (X) = µ and sd (X) = σ. Then
Z = X−µ

σ is the standardized r.v., for which E (Z) = 0 and sd (Z) = 1.

Examples.

• Variance of a throw with dice: 35
12

• Variance of a Bernoulli (p) variable is p(1− p)

• Variance of a Binomial (n, p) variable is np(1− p)

• Variance of a standard normal random variable (with µ = 0, σ = 1) is
V ar(X) = 1 (proof: with integration by parts)

• Variance of a Normal (µ, σ) variable is V ar(X) = σ2.
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2.3. Other measures

Higher moments of the distributions.

• n-th moment of a distribution: E (Xn)

• n-th central moment of a distribution: E {[X − E (X)]n}

• Variance = second central moment

• Skewness (standardized third central moment) = E
[(

X−µ
σ

)3]
– Skewness: It measures the asymmetry of the distribution.

• Kurtosis (standardized fourth central moment) = E
[(

X−µ
σ

)4]
– Kurtosis of the normal distribution is 3.

– It measures the "peakedness" of the distribution and that how "heavy"
its tails are.

Quantiles: other descriptive measures of the distributions.

• Quartiles: the "thresholds" between the quarters of distributions.

– 25% of the distribution is smaller than the first quartile, and 75% is
bigger.

– 50% of the distribution is smaller than the second quartile, and 50% is
bigger. (So second quartile = median.)

• Deciles: the "thresholds" between each 10% of the distribution.

– Example: 30% of the distribution is smaller than the third decile, and
70% is bigger.

• Percentile: the "thresholds" between each 1% of the distribution.

– Example: 72% of the distribution is smaller than the seventy-second
percentile, and 28% is bigger.

2.4. Measures for joint distributions

Measures of association.

• Covariance: Cov(X,Y ) = σXY = E [(X − E(X)) (Y − E(Y ))]

• A useful property: Cov(X,Y ) = E(XY )− E(X)E(Y ).

• Correlation: Corr(X,Y ) = Cov(X,Y )
sd(X)·sd(Y ) = σXY

σXσY
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Properties of covariance and correlation.

• If X and Y are independent, then Cov(X,Y ) = 0

– To see why, use the definition of expected value.
– The inverse is not true!!! Example: Pr(X = 1) = 0.25, Pr(X = 0) =

0.5, Pr(X = −1) = 0.25, and let Y = X2.

• If a, b, c, d constant,X , Y are random variables, thenCov(aX+b, cY +d) =
acCov(X,Y ).

• Cauchy-Schwartz-inequality: |Cov(X,Y )| ≤ sd(X) · sd(Y )

• −1 ≤ Corr(X,Y ) ≤ 1 (follows from Cauchy-Schwartz)

– Corr(X,Y ) = 1 if and only if there is a perfect positive linear relati-
onship.

– Corr(X,Y ) = −1 if and only if there is a perfect negative linear
relationship.

• Correlation is scale-invariant, i.e.Corr(aX+b, cY+d) = sign(ac)Corr(X,Y ).

Further properties of variance.

• V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X,Y )

• So V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) if only if X and Y are un-
correlated.

• Similarly, if X and Y are uncorrelated, then V ar (X − Y ) = V ar (X) +
V ar (Y ) .

• If {X1, . . . , Xn} are pairwise uncorrelated r.v.-s and {a1, . . . , an} are real
numbers, then V ar (

∑n
i=1 aiXi) =

∑n
i=1 a

2
iV ar (Xi) .

Conditional expectation.

• E(Y | X = x) is the expected value of Y given that X takes a certain value
of x. It is just a function of x which tells how the expected value of Y varies
with the values of X.

• E (Y | X = x) =
∑k

j=1 yj Pr (Y = yj | X = x) =
∑k

j=1 yjfY |X (yj | x)

• Example: X is years of education, Y is yearly wage. Then E(Y | X = 12)
(the expected wage of those who went to school for 12 years) is probably
higher than E(Y | X = 6).

• Note: we can use the notation E (Y | X) for the random variable which
takes the value E (Y | X = x) for X = x. This r.v. is a function of X.
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Properties of conditional expectation.

• For any function c(): E [c(X) | X] = c(X).

• For any functions a() and b(): E [a(X)Y + b(X) | X] = a(X)E(Y | X)+
b(X)

• If X and Y are independent, then E(Y | X) = E(Y ).

– As a consequence, if E(U) = 0 and U is independent of X, then
E (U | X) = 0.

• Minimizing property: E (Y | X) minimizes the expected squared prediction
error for Y among all functions of X.

– Let µ (X) = E (Y | X) . Then, for every g() function,E
[
(Y − µ (X))2 | X

]
≤

E
[
(Y − g (X))2 | X

]
and E

[
(Y − µ (X))2

]
≤ E

[
(Y − g (X))2

]
.

Law of iterated expectations.

• Law of iterated expectations: E [E (Y | X)] = E(Y ).

• A generalization: E [E (Y | X)] = E [E (Y | X,Z) | X] .

• A consequence: if E (Y | X) = E (Y ) then Cov (X,Y ) = 0. Moreover,
every function of X is uncorrelated with Y.

– The converse is not true. Example?

Conditional variance.

• Similar to the unconditional case: V ar(Y | X = x) = E
(
Y 2 | X = x

)
−

(E(Y | X = x))2

• A useful property:

– If X and Y are independent, then V ar(Y | X = x) = V ar(Y ) for
each x

Summary: alternative definitions of "independence".

• "Stochastic" independence: if f(Y | X = x) is the same for all x. (This is
what we defined, and we will understand "independence" as this.)

• Mean independence: if E (Y | X = x) is the same for all x.

• Uncorrelatedness: if Corr(X,Y ) = σXY = 0

• "Stochastic" independence implies mean independence. Mean independence
implies uncorrelatedness. But the opposites are not true!!!
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Summary of some common distributions.

Discrete Pr (X = k) E(X) sd(X)

Bernoulli p; 1− p p
√
p(1− p)

Binomial
(
n
k

)
pk(1− p)n−k np

√
np(1− p)

Poisson λk

k!
e−λ λ

√
λ

Continuous f(x) F (x) E(X) sd(X)

Uniform 1
b−a

x−a
b−a

a+b
2

b−a√
12

Normal 1

σ
√
2π
e
− (x−µ)2

2σ2
1

σ
√
2π

∫ x
−∞ e

− (t−µ)2

2σ2 dt µ σ

Exp. 1
θ
e−

x
θ 1− e−

x
θ θ θ

3. The normal distribution and related distributions

3.1. The normal distribution and its properties

It is of high importance because.

• Any linear combination of independent normal random variables is also nor-
mally distributed.

• It is the basis of many other distributions that are frequently used in statistics
and econometrics: lognormal, chi-square, t-distribution, F -distribution.

• Many real variables are normally distributed (like body height of people,
IQ-level of people etc). (Why?)

• Asympotics: many distributions have some relationship with the normal dis-
tribution in asymptotic terms (see later).

Properties of the normal distribution I.

• If X ∼ N(µ, σ), then aX + b ∼ N(aµ+ b, |a|σ).

– Proof: use the rule for the pdf of transformed variables.

• Hence, if X ∼ N(µ, σ), then (X − µ) /σ ∼ N(0, 1) (the standard normal
distribution).

• If X and Y are jointly normally distributed, then they are independent if and
only if Cov(X,Y ) = 0.

– This is a special feature of the normal distribution!
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Properties of the normal distribution II.

• Let X ∼ N(µX , σX), Y ∼ N(µY , σY ) and the two variables independent.

Then X + Y ∼ N
(
µX + µY ,

√
σ2X + σ2Y

)
.

– Proof: start from FX+Y (a) = Pr(X+Y ≤ a) =
∫∞
−∞ Pr(Y ≤ a−x |

X)fX(x)dx =
∫∞
−∞ FY (a − x) · fX(x)dx, and take the derivative

with respect to a. Then tedious calculations show that fX+Y (a) =

1√
σ2
X+σ2

Y

√
2π
e
− (a−µX−µY )2

2(σ2X+σ2
Y ) .

• Let X ∼ N(µX , σX), Y ∼ N(µY , σY ) and the two variables independent.

Then, for a and b constants, aX+bY ∼ N
(
aµX + bµY ,

√
a2σ2X + b2σ2Y

)
.

– Proof: it follows from the previous results.

Calculation of normal probabilities.

• The standard normal cdf, Φ (z) cannot be determined in a closed form integ-
ral but can be calculated numerically.

• All normal probabilities can be expressed in terms of the standard normal
cdf.

• Let X ∼ N (µ, σ) . Then Pr (a < X ≤ b) = Φ
(
b−µ
σ

)
− Φ

(a−µ
σ

)
.

• Example: Pr
(
|X−µσ | ≤ 1.96

)
= Φ (1.96)−Φ (−1.96) = 2 ·Φ (1.96)−1 =

0.95

3.2. Related distributions

Lognormal distribution.

• X is lognormally distributed if its logarithm is normally distributed

• If Y ∼ N(µ, σ), then the random variable X = eY is lognormally distribu-

ted. One can show: E
(
eY
)

= eµ+
σ2

2 , V ar
(
eY
)

= σ2e2µ+σ
2
.

Chi-squared distribution.

• If Z1, Z2, . . . , Zn are independent standard normal random variables, then
X =

∑n
i=1 Z

2
i follows a chi-squared distribution with n degrees of freedom.

• Its expected value and variance depends on the degrees of freedom: E(X) =
n, V ar(X) = 2n (why?).
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• It can take only positive values.

• Its distribution is very asymmetric.

t-distribution.

• If Z ∼ N(0, 1) and X ∼ χ2
n, independent from each other, then t = Z√

X/n

follows a t-distribution with n degrees of freedom.

• The shape is similar to the shape of standard normal distribution: it is sym-
metric, but has "heavier tails" (i.e. more extreme observations occur with
higher frequency).

• Expected value is 0 for n > 1, variance is n
n−2 for n > 2 (otherwise the

moments do not exist).

• As n −→∞, the t-distribution approaches the standard normal distribution.
(A proof requires the law of large numbers.)

F -distribution.

• If X1 ∼ χ2
k1

and X2 ∼ χ2
k2

, independent from each other, then F = X1/k1
X2/k2

follows an F -distribution with k1 and k2 degrees of freedom.

• It can take only positive values.

• t2n ∼ F1,n.

Material.

• W Appendix B

• CB 1, 2.1-2.3 (pages 47-62, until Definiton 2.3.6), 3.1-3.3, 3.5, 4.1-4.3, 4.5-
4.6.

– CB is needed only to the extent covered in the lectures.
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